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ABSTRACT

The shallow ground water at a site near Bemidji, Minnesota is contaminated with crude oil spilled
from a broken pipeline in 1979. With a continued source of dissolved crude oil components, the
geochemical conditions in the aquifer have evolved into aerobic, iron-reducing, and methanogenic redox
zones. The methanogenic zone starts within the crude oil-contaminated region and extends more than 60
meters downgradient. The methanogenic numbers in the aquifer are low, but variable, depending on the
subpopulation of methanogen. In areas close to the crude-oil source, hydrogen- and formate-utilizing
methanogens are found in numbers more than one hundred times higher than acetate-utilizers. The
acetate-utilizers are found only well below the non-aqueous phase oil and further downgradient. This
pattern of methanogen distribution suggests that growth of acetate-utilizers is limited near the source.
Laboratory results suggest that toxicity of the dissolved crude-oil is an explanation.

Serum bottle assays were conducted using crude oil in a mineral salts solution inoculated with an
enriched methanogenic consortia from a creosote-contaminated site in Pensacola, Florida. Acetate,
hydrogen, and formate were added and gas volume change was monitored. Hydrogen- and formate-
utilization were unaffected by the crude oil whereas acetate utilization was significantly inhibited. The
distribution of aquifer methanogens together with the toxicity assays form a consistent picture with the
hypothesis that acetoclastic methanogenesis is inhibited in the vicinity of the oil at the Bemidji site.
Because acetate degradation has been widely documented as the rate-limiting step in anaerobic waste
treatment processes, it is likely that the inhibition of acetoclastic methanogenesis by the crude oil affects
the overall methanogenic degradation rates of the petroleum hydrocarbon contaminants.

INTRODUCTION

In August 1979, a crude oil pipeline near
Bemidji, Minnesota (fig. 1) burst, spilling about
1,700,000 L (liters) of crude oil. Cleanup efforts
removed all but an estimated 400,000 L of crude
oil (Hult, 1984). The crude oil has moved through
the unsaturated zone contaminating the sediments
down to the water table. A plume of the water-
soluble components (including benzene, toluene,
ethylbenzene, xylenes, and polynuclear aromatic
hydrocarbons) has formed under the crude oil. In
the past 20 years, the plume has changed the
geochemical conditions in the aquifer near the oil
body from aerobic to iron-reducing and
methanogenic (Baedecker and others, 1993;
Bekins and others, 1999).

A model of the plume using a two-
dimensional, multispecies reactive solute

transport model with sequential aerobic and
anaerobic degradation processes was successful in
predicting the evolution of geochemical
conditions in the plume (Essaid and others, 1995).
However, the use of Monod kinetics to model
microbial growth in the aquifer resulted in
simulated microbial numbers that far exceeded the
observed aquifer microbial numbers. One process
that would act to limit the net growth is inhibition
of crude-oil biodegradation due to contaminant
toxicity.

Specific methanogens may be inhibited by
the increased contaminant concentration near the
crude oil or even by the non-aqueous phase of the
crude oil itself. Several authors have found that
acetoclastic methanogens are inhibited by toxic
compounds [Hickey and others, 1987
(chloroform, bromoethanesulfonic acid,
tricloroacetic acid, and formaldehyde); Patel and



others, 1991 (benzene ring compounds); Sierra-
Alvarez and Lettinga, 1991 (monosubstituted
benzenes, chlorobenzene, methoxybenzene, and
benzaldehyde); Colleran and others, 1992
(chlorinated and fluorinated low molecular weight
aliphatic and aromatic compounds); Davies-Venn
and others, 1992 (chlorophenols and
chloroanilines); van Beelen and Fleuren-Kemilä,
1993 (pentachlorophenol); and Donlon and others,
1995 (N-substituted aromatics)]. This is important
because about 70 percent (%) of the methane
produced comes from acetate fermentation by
acetoclastic methanogens as opposed to carbon
dioxide reduction by hydrogenophilic
methanogens (Jeris and McCarty, 1965;
Cappenberg, 1974; Cappenberg and Prins, 1974).
Thus acetate fermentation is known to be the rate-
limiting step in anaerobic wastewater-treatment
processes. Parkin and Speece (1982) were able to
model concentration-dependent inhibition of
methanogenic degradation of a variety of toxic

compounds by modeling inhibition of the acetate
utilization step.

Very little research has compared the
inhibition of acetoclastic methanogens to other
subpopulations. Colleran and others (1992) found
acetoclastic species were significantly more
inhibited by halogenated aliphatics than
hydrogenophilic subpopulations. Bhattacharya
and others (1995) found that whereas acetoclastic
methanogens were inhibited by 4-nitrophenol,
hydrogenophilic methanogens were not. Bekins
and others (1997) found that acetoclastic
methanogens were more susceptible to toxicity of
water-soluble creosote compounds than were
hydrogen- or formate-utilizing methanogens.

In this paper, we present evidence that
inhibition can explain some aspects of
methanogenic microbial numbers at the crude-oil
spill site near Bemidji, Minnesota.

METHODS

Most Probable Number (MPN)
determinations were done on sediment from cores
at three sites and compared with laboratory crude
oil toxicity experiments. Inhibition of
methanogens was measured by an anaerobic
toxicity assay (Owen and others, 1979) in which
the volume of gas produced in a methanogenic
microcosm with crude oil was compared to that in
a microcosm without crude oil.

Most Probable Number Determination

Most Probable Number determinations were
done on sediments from three sites located within
the anoxic portion of the plume, labeled A, B, and
C in figure 1. Cores containing aquifer sediments
and the contaminated groundwater were collected
with a 2.4 m (meter) freezing drive shoe (Murphy
and Herkelrath, 1996). Data from sites A, B, and
C were obtained from vertical profiles consisting
of 3, 1, and 2 cores, respectively. The single core
from site B was collected in 1996 while the five
cores from sites A and C were collected in 1997.
The method was the same for each core. The core
was cut with a large tubing cutter exposing the
aquifer material. Under a flow of oxygen-free
nitrogen gas, the first few centimeters of the core

Figure 1.   Site of 1979 crude oil spill near
Bemidji, Minnesota, showing location of cores
along a flow line.
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material at the cut were removed with a sterile
spatula exposing an uncontaminated surface.

Approximately 10 g (grams) of sediment
from the center of the core was added to a 25 x
142 mm (millimeter) anaerobic isolation roll
streak tube (Bellco Glass Inc., Vineland, N.J.
Note: Any use of trade, product, or firm names in
this paper is for descriptive purposes only and
does not imply endorsement by the U.S.
Government.) filled with 20.0 mL (milliliter) of
pre-reduced mineral salts solution. The mineral
salts were prepared as follows (per liter): 0.75 g of
KH2PO4; 0.89 g of K2HPO4; 0.36 g of
MgCl2⋅6H2O; 0.9 g of NH4Cl; 9.0 mL of trace
metal solution (Zeikus, 1977); 5.0 mL of vitamin
solution (Wolin and others, 1963); and 10 mg
(milligram) of Tween 80® [a nonionic surfactant
added to remove microbes from the sediment
(Yoon and Rosson, 1990)]. The pH was adjusted
to 7.0 with phosphoric acid, and the solution was
then boiled, cooled, and dispensed under a stream
of oxygen-free nitrogen gas. The solution was
sterilized at 121°C (degrees Celsius) [100 kPa
(kilopascal)] for 15 minutes. All mineral salts
solutions were amended with ferrous sulfide (FeS)
as a reducing agent (Brock and O’Dea, 1977) to a
final concentration of 1% by volume. Oxygen-free
nitrogen gas was allowed to flow over the surface
of the mineral salts solution as the sediment
sample was added. The tube was then sealed,
mixed well, and allowed to stand for 2 hours to
allow penetration of Tween 80® into the sample.
The tubes were then opened and sonicated [10
watts for 30 seconds] to dislodge the bacteria into
the mineral salts using a Branson Sonifier®,
Model 200, with the microtip attached (Branson
Ultrasonics Corporation, Danbury, Conn.) with a
flow of sterile oxygen-free nitrogen gas over the
surface. The sediment samples in mineral salts
were stored for not more than 4 hours at 20°C
before inoculation of the growth media.

Microbial concentrations in sediment
samples were determined using a five-tube MPN
analysis. Samples were serially diluted by orders
of magnitude into dilution mineral salts solutions
that were pre-reduced and anaerobically sterilized
as described by Holdeman and Moore (1972).
Aliquots of the dilutions were inoculated into
three different media, designed to promote growth
and the enumeration of acetate-, hydrogen-, and
formate-utilizing methanogenic microorganisms.

Acetoclastic and formate-utilizing organisms were
enumerated with the addition to mineral salts of
2.5 g of sodium acetate⋅3H2O or 2.5 g sodium
formate per liter, respectively. Hydrogen oxidizers
were enumerated by aseptically pressurizing the
serum bottles after inoculation with a 70:30 mix
of H2:CO2 to 140 kPa. The serum bottles were
allowed to incubate for a minimum of six weeks
at room temperature. The presence of the
methanogen subpopulation was established by the
detection of methane using a gas chromatograph
with flame ionization detection (Godsy, 1980).
Subsamples of sediments from site B (fig. 2) were
taken for analysis of oil content using the method
described by Hess and others (1992). Values for
oil content at a site near site A were determined
by Dillard and others (1997).

Anaerobic Toxicity Assays

Anaerobic toxicity assays followed an
adaptation of a protocol described by Owen and
others (1979). Microcosms in 120 mL serum
bottles were prepared to evaluate the toxicity of
crude oil to formate-, hydrogen-, and acetate-
utilizing methanogens. The serum bottles
contained a total of 100 mL comprised of crude
oil (10% by volume), mineral salts (70%), and an
enriched methanogenic consortia suspended in
mineral salts (20%). The bottles were prepared in
an anaerobic atmosphere and amended with
ferrous sulfide (FeS) as a reducing agent (Brock
and O’Dea, 1977) to a final concentration of 1%

Bottle
Energy 
Source Autoclaved Crude Oil No.

1 Acetate √ 2
2 Formate √ 2
3 Hydrogen √ 2
4 Acetate 1
5 Formate 1
6 Hydrogen 1
7 Acetate √ √ 1
8 Formate √ √ 1
9 Hydrogen √ √ 1
10 None √ 2
11 None √ 1

Table 1.   Contents of serum bottles. Number
indicates number of replicates. Check mark
indicates either bottle was autoclaved or
crude oil was present.



by volume. The bottles were sealed with solid
butyl rubber stoppers and aluminum crimp seals.
They were stored on their sides to reduce the
possibility of gas leakage. Change of gas volume
in the headspace was measured using a horizontal
manometer.

Formate, hydrogen, or acetate were added
to the bottles (table1). The acetate and formate
microcosms contained, respectively, 110 mg/L
(milligrams per liter) acetate or 330 mg/L formate
in mineral salts. The headspace of the formate and
acetate microcosms were flushed with oxygen-
free nitrogen and carbon dioxide at a 80:20 ratio
by volume. The hydrogen microcosms were
flushed with 80% hydrogen and 20% carbon
dioxide. At the start of the experiment, each
microcosm was brought to equilibrium with
atmospheric pressure using oxygen-free nitrogen.

Active microcosms were compared to
controls to determine inhibition. Each active
bottle containing crude oil was made in duplicate.
Positive controls were made with acetate,
hydrogen, and formate and no crude oil. Negative
controls consisted of just the methanogenic
consortium in mineral salts with the crude oil (in
duplicate) as well as autoclaved bottles with
acetate, hydrogen, and formate and the crude oil.
The headspace was brought to atmospheric
pressure with each measurement and any
consumption of gas was replaced with nitrogen.
All volume data were adjusted to standard
temperature and pressure. Volumes from
hydrogen microcosms were further normalized to
the headspace volume to account for differing
amounts of initial hydrogen mass.
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RESULTS

Most Probable Numbers from the site
reveal that acetoclastic methanogens are not found
near the oil body. In contrast, hydrogenophilic
and formate-utilizers are found in similar numbers
both within the oil body and outside it in the
aqueous plume. The anaerobic toxicity assays
show that the acetoclasts are inhibited
significantly by the crude oil whereas the
hydrogenophiles and formate-utilizers are not
(figs. 2 and 3).

Vertical Profiles of Methanogens

Vertical profiles of numbers of
methanogens and oil concentrations through the
plume of dissolved crude-oil compounds are
shown in figure 2. The figure shows the microbial
numbers of three subpopulations of methanogens
at each location, along with oil content on
sediments from sites A and B. Acetate-utilizing
methanogens were found under the crude oil body
at site A but only at a vertical distance of greater
than 1 meter below the oil. At the center site, B,
the anaerobic part of the plume is very narrow due
to upwelling of oxygenated water below a low-
permeability horizon. At this location there is
apparently no niche sufficiently distant from the
oil for the acetate-utilizers to occupy. At the

down-gradient site where there is no non-aqueous
oil, acetate utilizers are again present. Hydrogen-
and formate-utilizers are found both in the
vicinity of the oil and also downgradient. All
MPNs were below 100/g sediment. At site A,
there were relatively high numbers of
hydrogenophiles and formate-utilizers starting in
the unsaturated zone in the oil. They remained
high until about 1 meter below the oil where they
dropped to less than 1/g. They were found again
over the next 1.5 m, but hydrogenophiles were
found in greater abundance in this interval than
formate-utilizers. At site B, there was a peak of
formate-utilizers in the oil and another at 422.5 m
near the center of the aqueous plume. The
hydrogenophiles were relatively high throughout
the core. The hydrogen- and formate-utilizers do
not seem to be affect by the oil. Site C contained
all three subpopulations of methanogens, but at
very low numbers (note the scale on the site C
plot).

Anaerobic Toxicity Assays

The results from the toxicity experiment are
shown in figure 3. Formate-utilizing methanogens
produced 2.5 mL of gas after 26 days. The
microcosms with crude oil closely paralleled the
active control indicating no detectable toxicity
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Figure 3.   Gas production or consumption in microcosms fed with formate, hydrogen, or acetate.



effect. After the first reading, gas in the killed
control increased. Since the microcosm remained
inactive for the duration of the experiment, the
likely source is due to an experimental error,
possibly incomplete equilibrium with atmospheric
pressure at the start of the experiment.

When hydrogen is utilized by methanogens,
the net effect is a reduction of the gas volume in
the headspace. The rates of hydrogen utilization in
the microcosms with crude oil were similar to the
active control indicating no discernable toxicity
effect. Surprisingly, the hydrogen-utilizing
methanogens used about 20% more gas in the
presence of crude oil than in its absence. This
indicates a slightly greater level of activity in the
presence of the crude oil. The difference may be
due to an initial excess of hydrogen in the
headspace. Because hydrogen and carbon dioxide
were added in stoichiometric amounts (table 2), if
the hydrogen:carbon dioxide ratio in the
headspace is too low, carbon dioxide-limiting
conditions will occur when the as the hydrogen is
exhausted. The microcosms with crude oil may
have produced enough carbon dioxide from the
degradation of organics to eliminate this
limitation. Further studies including tighter
controls of the headspace gas are planned to
verify the possibility of carbon dioxide limitation.

The behavior of the acetate microcosms
contrasts sharply with that of the hydrogen and
formate microcosms. Production of methane and

carbon dioxide in the acetate microcosms was
affected significantly by the crude oil. All active
microcosms produced 4.8 mL of gas. However,
while the microcosm without crude oil took 30
days, the microcosms with crude oil took 100
days to reach completion.

DISCUSSION AND CONCLUSIONS

Serum-bottle toxicity assays using crude oil
and enriched methanogenic cultures with formate,
hydrogen, and acetate showed that formate- and
hydrogen-utilization were unaffected by the crude
oil whereas acetate utilization was significantly
inhibited. This result is consistent with observed
numbers of methanogens found in the aquifer.
Microbial numbers at the site indicate that
formate- and hydrogen-utilizing methanogens are
present near the non-aqueous oil whereas
acetoclastic methanogens are found only at
distances greater than 1 meter from the oil.

Anaerobic-toxicity experiments using
water-soluble components from creosote also
showed that acetoclastic methanogens were more
susceptible to inhibition than the others were.
This observed inhibition may be due to the lower
energy yield (table 2) from the degradation of
acetate. The energy gained from acetate
fermentation may be inadequate to compensate
for the toxicity near the oil. Methanogens from
the two carbon dioxide reduction pathways may
get just enough energy to overcome the toxic
effects of the oil (Bekins and others, 1997).

Because the inhibition of acetoclastic
methanogenesis by the crude oil would affect the
overall methanogenic degradation rates of the
petroleum hydrocarbon contaminants, it is
important to identify sources and extent of
inhibition.
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